PREPARATION AND SYNTHETIC APPLICATION OF 2-BROMOALLYLTRIMETHYLSILANE AS A 1-HYDROXYMETHYLVINYL ANION EQUIVALENT

Hisao Nishiyama, Hiroshi Yokoyama, Shinzo Narimatsu, and Kenji Itoh^{*}

School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 440 Japan

<u>Abstract</u>: The 1-trimethylsilylmethylvinyl group, as a 1-hydroxymethylvinyl equivalent, was readily introduced to epoxides with the corresponding Grignard reagent derived from 2-bromoallyltrimethylsilane. Obtained 2-(2-hydroxy-ethyl)-allylsilanes were converted to α -methylene- γ -lactones via diols.

Allylsilane has been recognized not only as a versatile reagent for a new type of carbon-carbon bond formation but also as a readily convertible functional group by reaction with a variety of electrophiles.¹ We wish to describe here a new method for the introduction of 1-trimethylsilylmethylvinyl group to several epoxides. This method and subsequent desilylative oxidation provide the utility of 2-bromoallyltrimethylsilane <u>1</u> as a 1-hydroxymethylvinyl anion equivalent 2, which serves to construct α -methylene- γ -lactone skeleton.

2-Bromoallyltrimethylsilane $\underline{1}$ was prepared in three steps from commercially available 1,2,3-tribromopropane². The process of this sequence can be performed on a large scale. According to the reported method³ 1,2,3tribromopropane was converted to 2,3-dibromopropene by the action of sodium hydroxide. Treatment of 2,3-dibromopropene with trichlorosilane and triethylamine in the presence of a catalytic amount of cuprous chloride to give 2-bromoallyltrichlorosilane.⁴ For large scale manipulation, there is no need to purify the trichloroallylsilane. The crude trichlorosilane can be directly added to an ether solution of methyl Grignard reagent to give $\underline{1}$ (63% yield from 2,3-dibromopropene).⁵

Several epoxides <u>3</u> were subjected to react with the l-trimethylsilylmethylvinyl Grignard reagent generated from <u>1</u> in tetrahydrofuran in the presence of cuprous iodide to 2-(2-hydroxyethyl)allylsilanes <u>4</u> in good yields (Table 1).⁶

Table 1 Reaction of Epoxides and 1-Trimethylsilylmethylvinyl Grignard Reagent.^a

Entry	Epoxide <u>3</u>	2-(2-Hydroxyethyl)allylsilane 4	Yield ^b (%)
1	^C 2 ^H 5 0 3a	C2H5 SiMe3 4	83
2	^{n-C6H13} <u>3b</u>	n-C ₆ H ₁₃ OH	82
3	$\begin{array}{c} \begin{array}{c} 1 - C_4 H_9 \\ C_2 H_5 \end{array} \begin{array}{c} 0 \\ \end{array} \begin{array}{c} 3 \\ \end{array} $	C2H5 OH SiMe3 4C	93
4	^C 6 ^H 5√0 3₫	$\begin{array}{c} C_{6}H_{5} \\ \hline \\ OH \\ \underline{4d} \\ 17:3 \end{array} \begin{array}{c} C_{6}H_{5} \\ \hline \\ OH \\ \underline{4e} \end{array} \begin{array}{c} SiMe_{3} \\ \hline \\ \underline{4e} \end{array}$	95
5		SiMe 3 HOH	85

a. The Grignard reagent (1.6 equiv. to 3), CuI (10 mol% to 3), THF, -30 O C (1 hr) then 0 O C (ca. 2 hr). b. Isolated yield; after purification by silica gel column chromatography with ether-hexane as eluent. The 2-(2-hydroxyethyl)allylsilane $\underline{4}$ was treated with m-chloroperbenzoic acid (1.4 equiv. to $\underline{4}$) and sodium bicarbonate (2 equiv. to $\underline{4}$) in dichloromethane (0 ^OC, 1.0-1.5 hr), followed by a solution of aqueous sulfuric acid (0.3 <u>N</u>, 0.8 equiv. to <u>4</u>) and tetrahydrofuran (volume ratio, 1:3) to afford diol <u>5</u>. The diols were also obtained by treatment of <u>4</u> with phenylselenenyl chloride (2-3 equiv. to <u>4</u>) and triethylamine (1 equiv.) in dichloromethane (-78 ^OC, 15 min), followed by oxidation with hydrogen peroxide (0 ^OC, 30 min). These transformation are shown in the following scheme.

These results have shown that 2-bromoallyltrimethylsilane served as a synthetically useful 1-hydroxymethylvinyl anion.⁷ Further application is described as follows. The diols $\underline{5}$ thus obtained are useful precursors to α -methylene- γ -lactones.⁸ The diols ($\underline{5a}-\underline{5d}$) were treated with active manganese dioxide (15-30 weight fold of $\underline{5}$) in dichloromethane to give the corresponding lactones ($\underline{6a}-\underline{6d}$) by way of hemiacetals.⁹ The diol $\underline{5e}$ gave

1269

the aldehyde $\underline{7}$ in 67% yield. The lactone <u>6e</u> could be obtained by treatment of the aldehyde $\underline{7}$ with active manganese dioxide (20 weight fold), potassium cyanide (5 equiv.), and 18-crown-6 (ca. 10 mol% of $\underline{7}$) in terahydrofuran for 1 day.¹⁰ This reaction may proceed via hydroxy cyanoketone <u>8</u> as in Corey's oxidation procedure of α,β -unsaturated aldehyde.¹¹

References and Notes

- 1. (a) A. Hosomi and H. Sakurai, Tetrahedron Lett., 1976, 1295.
 - (b) A. Hosomi and H. Sakurai, J. Am. Chem. Soc., <u>99</u>, 1673 (1977).
 - (c) A. Hosomi, H. Hashimoto, and H. Sakurai, Tetrahedron Lett., 1980, 951.
 - (d) As review: T.H. Chan and I. Fleming, Synthesis, 1979, 761.
- 2. Tokyo Kasei, T 0355.
- 3. R. Lespieau and M. Bourguel, Organic Syntheses, Coll. Vol. I, 209 (1956).
- 4. 2-Bromoallyltrichlorosilane: b.p. 98 ^OC/38 mmHg; ¹H-NMR(CDCl₃, TMS)δ 2.94 (s, 2H, SiCH₂), 5.6-5.9(m, 2H, C=CH₂) ppm.
- 5. <u>1</u>: b.p. 64-65 ^OC/38-39 mmHg; ¹H-NMR(CDCl₃, TMS)δ 0.13(s, 9H, SiCH₃), 2.13 (s, 2H, SiCH₂), 5.1-5.4(m, 2H, C=CH₂)ppm.For this procedure in detail, see N. Furuya and T. Sukawa, J. Organomet. Chem., 96,C1-C3 (1975).
- 6. C. Huynh, F. Derguini-Boumechal, and G. Linstrummelle, Tetrahedron Lett., <u>1979</u>, 1503.
- 7. E.J. Corey and G.N. Widiger, J. Org. Chem., <u>40</u>, 2975 (1975).
- 8. (a) J.A. Marshall and R.H. Ellison, J. Am. Chem. Soc., <u>98</u>, 4312 (1976).
 (b) R.M. Carlson, Tetrahedron Lett., 1978, 111.
- 9. ¹H-NMR (CDCl₃, TMS)δ ppm: <u>6a</u>, 1.1(t,3H), 1.7(m,2H),2.2-3.3(m,2H), 4.57(m, 1H), 5.7(t,1H,J=2 Hz),6.27(dd,1H, J=2 Hz, 6Hz); <u>6b</u>, 0.9-2.0(11H), 2.8(m, 2H), 4.49(dt,1H), 5.55(t,1H, J=2.6Hz), 6.13(t,1H, J=2.6Hz); <u>6c</u>, 0.9-2.0 (11H), 2.73(t,2H,J=2.6Hz), 5.54(t,1H,J=2.6Hz),6.15(t,1H,J=2.6Hz); <u>6d</u>, 4.73 (t,1H), 4.85(m,2H),5.43(d,1H,J=3Hz),6.37(d,1H,J=3Hz),7.3(bs,5H); IR (liquid film)ν cm⁻¹; <u>6a</u>,1765, 1669; <u>6b</u>, 1770, 1672; <u>6c</u>, 1764, 1667; <u>6d</u>, 1772, 1674.
- 10. <u>6e</u>: ¹H-NMR(CDCl₃,TMS) δ ppm, 1.0-2.7(9H), 3.70(dt, 1H, J=3.6Hz, 10.2 Hz), 5.33 (d, 1H, J=3.2Hz), 5.69(d, 1H, J=3.2Hz); IR(liquid film) ν cm⁻¹, 1771, 1668.
- 11. E.J. Corey, N.W. Gilman, and B.E. Ganem, J. Am. Chem. Soc., <u>90</u>, 5616 (1968).

(Received in Japan 17 December 1981)